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Inhomogeneous percolation problems and incipient infinite 
clusters 
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$ Department of Mathematics, Comell University, Ithaca, NY 14853, USA 

Received 23 May 1986 

Abstract. We consider inhomogeneous percolation models with density p E  + f ( x )  and 
examine the forms of f ( x )  which produce incipient structures. Taking f ( x )  = I x I - ~  and 
assuming the existence of a correlation length exponent v for the homogeneous percolation 
model, we prove that in d = 2, the borderline value of A is A b  = I /  v. If A > 1/ Y then, with 
probability one, there is no infinite cluster, while if A < l / v  then, with positive probability, 
the origin is part of an infinite cluster. This result sheds some light on numerical and 
theoretical predictions of certain properties of incipient infinite clusters. Furthermore, for 
d > 2, the models studied here suggest what sort of ‘incipient objects’ should be examined 
in random surface models. 

1. Introduction 

Much of the work on the critical behaviour of Bernoulli (independent) percolation is 
concerned with the properties of ‘incipient infinite clusters’. A host of these objects 
have been discovered and phenotyped by a number of workers (see, e.g., Stanley (1977) 
Pike and Stanley (1981) and the general reviews of Stauffer (1979) and Essam (1980)); 
their scaling properties are considered crucial to the understanding of the critical 
regime in both percolation and related models (e.g. dilute ferromagnets and random 
resistor networks). 

Despite the universal enthusiasm from the theoretical and numerical communities, 
there are very few rigorous results on the subject of incipient infinite clusters-in 
essence, the only exception being the work bf Kesten (1986a)l. In this paper, we 
examine an alternative proposal for the incipient infinite cluster, which can be analysed 
rigorously, and which has some features reminiscent of certain numerical and theoreti- 
cal results. 

Numerically, the question of ‘what is an incipient infinite cluster?’ is almost 
unnecessary; simulations of large samples performed at (or near) threshold produce 

5 Work supported by the NSF under Grant No DMR-83-14625. 
1) Work supported by the DOE under Grant No DE-AC02-83-ER13044. 
* Work supported by the NSF under Grant No DMS-85-05020. 
7 It was also suggested in Chayes er al(1986) and Chayes and Chayes (1985a) that the infinite-time invaded 
regions in the stochastic growth model known as invasion percolation may be suitable candidates for an 
‘incipient infinite cluster’. Such ideas have been entertained before (see, e.g., Wilkinson and Willemson 
1983), but, as yet, no rigorous connection exists between invaded regions and incipient infinite clusters as 
defined in Kesten (1986a). 

0305-4470/87/061521+ 10$02.50 @ 1987 IOP Publishing Ltd 1521 



1522 J T Chayes, L Chayes and R Durrett 

enormous connected clusters and these objects are studied. Mathematically, the ques- 
tion is somewhat delicate. Indeed, it is expected on general grounds (and rigorously 
known in two dimensions (Russo 1981)) that, for short-range problems, the percolation 
transition is continuous. Whenever this is the case, with probability one, there can be 
no infinite object at the percolation threshold. 

The proposal by Kesten (1986a) is to examine a sequence of finite volume condi- 
tional measures, constructed at the threshold density, which enjoy the property that 
the limiting measure contains an infinite connected object. For technical reasons- 
which are essentially the same ones that will plague us here-this programme has, so 
far, only achieved success in d = 2. 

An alternative idea is as follows. Consider a bond or site percolation problem on 
a regular lattice (henceforth taken to be Z d )  with percolation threshold pc. (Precise 
definitions will be provided in the next section.) As usual, we will take the bond (or 
site) ‘occupation’ probabilities to be statistically independent; however, we now allow 
these probabilities to be an inhomogeneous function of (lattice) position. In particular, 
we will consider densities of the form 

P(X) =Pc+f(x)  (1) 
where f(x)  3 0 and f (x)  3 0 as 1x1 +a. Moreover, we only consider functions f which 
do not affect the average density, i.e. we require that if A L  is an Ld-sized block centred 
at the origin, then 

L-d c f(x)+O as L+cO. ( 2 )  
X E A i .  

The goal in mind is to find a function f which tips the delicate balance-found in 
the uniform system-between the existence and absence of an infinite object. On the 
basis of ‘folk wisdom’, it is plausible that the interesting functions to consider are the 
power laws 

f b )  = l / IX l* .  (3) 
Temporarily restricting attention to such functions, it is meaningful to ask whether 
there is a borderline value of A, Ab, such that when A > A b ,  there is no infinite cluster 
(with probability one), while if A < A b ,  the origin is connected to infinity with positive 
probability. If the answer is affirmative, one could study the properties of these infinite 
objects for powers smaller than (or perhaps including) Ab. 

Of course, we have fallen a little short of these goals; in particular, we are unable 
to treat the problem in dimensions larger than two. Furthermore, even in d = 2, our 
proof of the existence of a critical power Ab requires the existence of a correlation 
length exponent, v, for the homogeneous problem. If it is the case that v exists (in a 
sense which will be made precise in the next section), then it is somewhat surprising 
to learn that 

A b =  l / V .  (4) 
Although our proof is restricted to d = 2, it is probable that relation (4) holds more 
generally. 

It is worth noting, as was pointed out to us by Stanley and Stauffer, that our result 
is reminiscent of the conclusions of Stanley (1977), Pike and Stanley (1981) and 
Coniglio (1981) that the dimension, d,,  of the ‘singly connected’ (or ‘red’) bonds of 
the incipient infinite cluster satisfies 

d,=  l / v .  ( 5 )  
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Although we do not yet have a compelling explanation as to why there should be a 
relation between these two results, it is not unlikely that this is the case, and that such 
a connection would provide some insight into the behaviour of these systems at 
threshold. We will therefore establish equation (4), modulo the proviso concerning 
the existence of U. 

We will devote the next section to some precise definitions (mainly to fix notation). 
In 0 3, we will prove our principal result (theorem 2)  and discuss some possible 
extensions to higher-dimensional problems. To simplify matters, we will confine our 
attention to the square bond lattice; our results, however, can be extended to several 
other two-dimensional models. 

2. Preliminaries 

Consider the site lattice Z2, and denote by B2 the set of all nearest-neighbour pairs 
(bonds) of Z2. Each bond b E B z  will be labelled by the Cartesian coordinate of its 
midpoint. Two bonds are said to be connected iff they have an endpoint in common. 

Percolation on B2 is defined by declaring each bond b E B 2  to be occupied (or 
vacant) with probability P b  (resp 1 - P b ) .  These occupation events are generally taken 
to be independent and the P b  invariant under (lattice) translations. This provides us 
with a one-parameter family of problems depending on the value of P b = p E  (0, 1). 

Next, we consider the dual lattice B:, which is obtained by translating B2 half a 
unit in the x1 and x2 directions. Each b*EBT is in one-to-one correspondence with 
the b E B z  sharing its midpoint. Thus we may define the dual model by declaring b* 
to be vacant when the corresponding b is occupied and vice versa. 

Two sites, x, y E Z2, are said to be connected iff there is a path of occupied bonds 
from x to y. The set of sites connected to a given site, x, will be called the connected 
cluster of x and denoted by C(x) .  Observe that C(x) is a random subset of if2; its 
size (i.e. number of sites) will be denoted by IC(x)l. 

Since the introduction of the percolation model (Broadbent and Hammersley 1957), 
it has been known that there is a critical value of p ,  p c ,  satisfying 0 < p c  < 1 such that 

IC(O)l< a with probability one 

if p < p c ,  while 

IC(O)l= a with non-zero probability ( 6 b )  

if p 7 p c .  This critical value of p is called the percolation threshold. In Kesten (1980), 
it was established that the dual model is also critical at (direct) bond density equal to 
pc .  (Since in this case the direct and dual models may be identified, this implies pc  = i.) 

(7) 

while for p > p c ,  one either looks at the (dual) connectivity between points on the dual 
lattice: 

r&p = prob(x* connected to O* by occupied dual bonds) (8) 

~ ‘ ~ ~ = p r o b ( x ~  C ( 0 )  and(C(O) (<a ) .  (9) 

For values of p < p c ,  it is of interest to consider the so-called connectivity: 

T~~ = prob(x E C(0)) 

or the truncated connectivity: 
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It is straightforward to establish (see e.g. Kesten 1982, Chayes and Chayes 1985a) that 
the limits 

[-'(PI = -1im (/xi-' log T ~ ~ )  ( loa )  
lxltm 

exist; [ ( p )  is called the correlation length and satisfies, for finite x, the inequality 
T ~ ~ (  p )  s exp( - x / [ ( p ) ) .  A similar estimate is available for the quantity [*( p ) .  Accord- 
ing to Grimmett (1981, 1983), [ - ' ( p )  is a continuous function which, unless zero, is 
strictly decreasing. Corresponding statements are also valid for (t*( p ) ) - ' .  As for the 
truncated connectivities, it is also possible to show (Chayes and Chayes 1985b) that 

( [ ' ( p ) ) - '  = - lim (1xI-l log &) (10c) 
lxltm 

exists, and that in fact [ ' ( p )  = i [ * ( p ) .  Obviously, in the self-dual model [ * ( p )  = 
[( 1 - p ) ,  so that in particular ['( p )  = $[( 1 - p ) .  

A long time ago, it was shown (Hammersley 1957; see also Aizenman and Newman 
1984) that 

S ( P ) < W  e J3lC(O)II<W. (11) 
The essence of the result of Kesten (1980) is that the correlation length (and hence 
E[lC(O)I] )  diverges exactly at p c .  Thus 

5( P) < a e p  < p c  . (12) 
This has been recently extended to general dimension (Aizenman and Barsky 1986). 

It is natural to suspect that the divergence of the correlation length is characterised 
by a power law: [ ( p ) = l p - p c 1 - ' .  Such a result has not yet been established with 
complete rigour for any dimension. (Some progress on this question can be found in 
Kesten (1981), Durrett and Nguyen (1985) and Nguyen (1985); see also Chayes et a/  
(1985a).) It is perhaps not too much to hope that, in general, the limit 

v=lim llog s(P)llog(Pc-P)l (13) 
PtPC 

exists. 
The correlation length as defined above is somewhat abstract. A natural (physical) 

notion of the correlation length is as follows: assume that [( p )  <a, and consider the 
L x L box A L .  Let R , ( p )  be the probability that there is a crossing from the left face 
of A L  to the right (see figure 1). It is straightforward to establish that if L >> [( p ) ,  then 

I-----L- 

Figure 1. A left-right crossing. 
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R , ( p )  is small; indeed, RL(p)-exp(-L/((p)).  On the other hand, at very small 
distances, the discreteness of the lattice dictates that R , ( p )  will be of order one, 
essentially independent of p (i.e. as we move through the critical regime). This implies 
that there must be a crossouer scale where R L ( p )  first becomes ‘small’ by some fixed 
criterion. It is an overwhelming temptation to identify this scale with the correlation 
length as defined by equation (10). That this is indeed possible has been demonstrated 
by Chayes et a1 (1985a) (see also Chayes and Chayes 1985a). 

Proposition. 1 .  There is a constant 0 < c < 1 such that if L( p )  is the smallest scale where 
RL( p )  d c, then, up to logs, L( p )  is the correlation length, in the sense that 

a , l (p ) / log  L ( P )  5 ( P )  U2L(P) 
for some positive finite constants a ,  and a 2 .  

Proof. See the above references. 

In particular, proposition 1 tells us that if ( ( p )  diverges with critical exponent v in 
the sense of equation (13), so does L ( p ) .  It is worth remarking that proposition 1 
goes through more or less intact in higher dimensions. We now possess all the machinery 
necessary to prove our principal result. 

3. Main results 

Let us first outline the strategy of the proof. In the preceding section, we learned that, 
at the scale of the correlation length, crossing probabilities of rectangles are small but 
not unreasonably so. Similarly, for p 3 p c ,  at the scale of the truncated or dual 
correlation length, it is not unlikely to observe crossings of rectangles by dual bonds. 
This (at least in d = 2) is what prevents the existence of an infinite cluster at p = p c .  

In order to illustrate the above reasoning, let us divide the two-dimensional universe 
into disjoint annuli, each one (say) three times the size of the one before (see figure 
2). Let A T ( p )  be the probability, at bond density p ,  that there is a circuit of dual 
bonds in the annulus A ~ L \ A L .  It is known (Russo 1978, Seymour and Welsh 1978) 

...... - 9 L  __i ........ 
...................... ...... ................... 

Figure 2. Circuits in annuli. 
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that AT(p)  can be bounded below by a function of the dual crossing probability, 
RT( p )  = 1 - RL( p ) ;  explicitly, 

Thus, if RE( p )  is not terribly small, neither is AT( p ) .  If p 3 p c ,  one can therefore bank 
on observing on the order of log [*( p )  (independent) annuli surrounding the origin 
which contain a cutting circuit of dual bonds. Beyond this distance is where one runs 
into the infinite cluster; inside it, the infinite cluster is hard-pressed-indeed, the 
probability of observing an infinite cluster at the origin is bounded above and below 
by inverse powers of [*( p ) .  Hence, at p = p c ,  the divergence of the correlation length 
prevents the existence of an infinite cluster. 

= p - p c ,  ['(C) relates density to a distance scale. Since 
('(c) is monotone, we may invert the function (i.e. define, unambiguously, /U([').) 
Thus, if we consider the inhomogeneous density 

Now, as a function of 

A x )  =pc+C(lx l )  (15) 
we find that each distance scale feels that it is right at the scale of 'the correlation 
length' (perhaps to within logarithmic factors). Any further tinkering (as we do below) 
has the effect of making each scale act as though it is well within or well outside the 
correlation length. 

Theorem 2. For all E > 0, if p ( x )  = p c + C ( I ~ I 1 + E ) ,  then with probability one, the origin 
is in a finite cluster, whereas if p ( x )  =pc+h(IxI1- ' ) ,  then with non-zero probability, 
the origin is connected to infinity. In the latter case, there is a unique infinite cluster 
with probability one. 

ProoJ: Take E ER+. Let us consider the inhomogeneous density p ( x )  = pc+C(IxI1+'). 
Observe that in the annular regions A3L\AL, the density is no larger than pc+&((LI '+") .  
At this density, in a uniform system, the probability of observing that a square of size 
L is crossed by dual bonds is bounded below independent of L-were this not the 
case, then by the considerations of proposition I ,  something smaller than L would 
have been the correlation length, not L'+'! From this, and the bound of equation 
(14), we see that the probabilities A f ( p )  are bounded below uniformly in L. (This, 
as well as many other results cited, requires the use of the Harris-FKc inequality 
(Harris 1960, Fortuin et al 1971). For our purposes, this means that the probabilities 
A*,(p), which involve the cooperative activity of dual bonds, is at least as large as 
AT(,5), where 1 - i  is the minimum dual bond probability found anywhere in the 
annulus.) Hence, if we divide Z 2  into disjoint scales as depicted in figure 2, with 
probability one, infinitely many of the annuli contain circuits of dual bonds. This 
disconnects the origin from infinity with probability one. 

Next, consider the inhomogeneous density p ( x )  =pc+C(lx l ' - ' ) .  In this case, we 
will exploit the excess density to construct, by hand, an infinite cluster. To this end, 
consider a sequence of lengths Lo, L I  , . . . satisfying L,,+l = 3Ln.  Let V,, and Hn be the 
vertical and horizontal regions given by 

and 
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and define T,, = V,, U H,,. (The reader is urged to consult figure 3.) Observe that the 
T,, have well tailored overlaps (as depicted in figure 4), and extend to infinity. Now, 
the density inside T,, is at least as large as pc+b(17L,,I'-E). Hence, by definition, the 
dual correlation length is of order LL-" t. 

Consider the event V,, that there is a top-bottom crossing of V,, by direct bonds. 
The only thing that prevents V,, from occurring is a left-right crossing of V,, by dual 
bonds. By considering dual crossings between all possible pairs of points on the left 
and right faces of V,,, it is not hard to see that the probability of the latter is bounded 
above by c,L; exp(-c,L,,/Li-'), where c1 and c2 are positive finite constants indepen- 
dent of n. Hence, 

probp(xl(V,,)a 1 - clL; exp(-c,Li). (18) 

4-t-h-m . . . , , , , . . . . . , . . . . . . . . . . , . . , . . , . , . , . . . . . . . . . . . . t , . . , . . . . . . . . . , . . . . . . . 

tL" --I 
Figure 3. The region T,$. 

Figure4. The T construction. 

t Again, we can use the Hams-FKG inequality to bound the correlation length inside T, (above and below) 
by the value it would have in the homogeneous systems with the densities of the best and worst case scenarios. 
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An identical argument shows that the event X,, that there is a left-right crossing of 
H,, by occupied bonds has probability bounded below by an estimate qualitatively 
similar to the one in equation (18). Thus, if we consider the event T,, = V,, n X,, that 
‘the T is crossed’, we can find positive finite constants d ,  and d2 such that, uniformly 
in n, 

prob,,,,( T,,) a 1 - d,  Li exp( -d2 L i ) .  (19) 
From (19), it is not hard to show that, with probability one, all but a finite number 

of the T are crossed. (Here we have used the Borel-Cantelli lemma.) This implies, 
with probability of order one, the presence of an infinite cluster a finite distance from 
the origin-local fluctuations will now serve us to get the origin connected to infinity 
with non-zero probability. 

Furthermore, if we do the T construction simultaneously along all four coordinate 
directions, we see that (with probability one) the origin is surrounded infinitely often 
by occupied circuits. This establishes the uniqueness of the infinite cluster. 

Corollary. If, for the B2 homogeneous percolation systems the correlation length 
exponent v exists in the sense of equation (13), then for inhomogeneous densities of 
the form 

with f (x)  - l /[x[*,  the borderline value of A for the existence of an infinite cluster is 

P(X) = & + A x )  

A b  = 1/ V. 

4. Concluding remarks 

(i)  The reader will observe that we have attacked the dual model more vehemently 
than the direct model. A more traditional statement of the corollary to theorem 2 
should therefore be A b  = 1/ v’ for d = 2. In self-dual models, it goes without saying 
that v ’ =  v (in any sense in which either should exist). For all other two-dimensional 
lattices where we can prove the above theorem, the relationship v ’ =  v has recently 
been established by Kesten (1986b). 

(ii) As the above remark indicates, part of what enabled us to prove theorem 2 is 
that, in two dimensions, the dual of bond percolation is bond percolation. (This is 
inarguable for self-dual models, and morally true in other two-dimensional systems.) 
A manifestly different situation is encountered in d > 2. For example, in d = 3, the 
model dual to bond percolation on Z3 is that generated by independently occupied 
plaquettes. Furthermore, the relevant dual transition is not plaquette percolation. 
Indeed, as was shown by Aizenman er al (1983), the relevant transition concerns the 
formation of infinite sheets of plaquettes. 

In spite of the utility of the incipient infinite cluster in bond models, it seems that 
no one has yet addressed the question of the relevant incipient object for random 
surface models. Indeed, it is not even clear how one should define such an object. 
Since, at the threshold of the surface-dominated regime, we are well beyond the point 
of plaquette percolation, there will already be a (very) dense infinite cluster of plaquet- 
tes. This must somehow be pared down. 

In bond percolation problems, one can always look at the ‘backbone’ (incipient or 
otherwise) of infinite structures. After a moment’s thought, it is realised that a backbone 
is an infinite object that has no ‘boundary’-in the sense that none of its bonds have 
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only a single exposed vertex. Is there an ‘incipient infinite surface’ which is without 
‘boundary’ (i.e. without any exposed d - 2  cells) and surrounds any finite region at 
the threshold of the surface-dominated regime? If so, what are the properties of this 
surface? It may be the case that something satisfying the above criterion is already 
present (i.e. with positive density) at threshold due to a ‘polymer-like’ condensation 
of surface filaments (tubes) at lower plaquette densities. If so, such an effect would 
have to be disentangled. 

The methods of this paper can easily be applied to an ‘incipient backbone’; such 
an object could have been constructed with inhomogeneous density p c  + C( IxI’-“) 
simply by running the ‘ T  construction’ simultaneously to the left and right. A more 
interesting issue is the extension of our results to the surface models in higher 
dimensions. For example, if we consider, in d = 3, inhomogeneous plaquette densities 
of the form q ( x )  = ( 1  - p c ) + & ( l x l l - E ) ,  one can construct, by extensions of theorem 2, 
an enormous ‘incipient surface’ with no boundary. In such cases, one would find an 
analogue of theorem 2, i.e. the borderline power law would again be 1/ v. How much 
of this surface (if any) is the relevant object for understanding the critical point 
behaviour of Bernoulli systems from the point of view of the surfaces is an open 
question. In any case, in accordance with the traditional ideas of Widom (1965), the 
above result indicates that a correlation length exponent for a given problem may have 
‘something to do’ with the associated random surface problem. 
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